FIR-filtre, IIR-filtre, og den lineære konstant-koeffisient differens-ekvationen Causal Moving Average (FIR) - filtre Weve diskuterte systemer der hver prøve av utgangen er en vektet sum av (visse av) prøvene av inngangen. La oss ta et årsaksvektet sumssystem, hvor årsakssammenheng betyr at en gitt utgangsprøve bare avhenger av gjeldende inngangseksempel og andre innganger tidligere i sekvensen. Verken lineære systemer generelt, og heller ikke finite impulsresponsystemer, må være årsakssammenhengende. Kausalitet er imidlertid praktisk for en slags analyse som skulle undersøke snart. Hvis vi symboliserer inngangene som verdier av en vektor x. og utgangene som tilsvarende verdier av en vektor y. så kan et slikt system skrives som hvor b-verdiene er quotweightsquot brukt på de nåværende og tidligere inngangssamplene for å få den nåværende utgangsprøven. Vi kan tenke på uttrykket som en ligning, med likestillingsbetegnelsen betyr lik, eller som en prosedyreinstruksjon, med likestillingsbetegnelsen. Lar oss skrive uttrykket for hver utgangseksempel som en MATLAB-sløyfe med oppgaveoppgavene, hvor x er en N-lengdevektor av inngangsprøver, og b er en M-lengdevektor med vekt. For å håndtere det spesielle tilfellet ved starten, vil vi legge inn x i en lengre vektor xhat hvis første M-1-prøver er null. Vi vil skrive den veide summasjonen for hver y (n) som et indre produkt, og vil gjøre noen manipulasjoner av inngangene (som reversering b) til dette formål. Denne typen system kalles ofte et bevegelig gjennomsnittsfilter av åpenbare årsaker. Fra våre tidligere diskusjoner bør det være åpenbart at et slikt system er lineært og skift-invariant. Selvfølgelig vil det være mye raskere å bruke MATLAB convolution-funksjonen conv () i stedet for vår mafilt (). I stedet for å vurdere de første M-1-prøvene av inngangen til å være null, kan vi betrakte dem til å være de samme som de siste M-1-prøvene. Dette er det samme som å behandle inngangen som periodisk. Vel bruk cmafilt () som navnet på funksjonen, en liten modifikasjon av den tidligere mafilt () - funksjonen. Ved å bestemme impulsresponsen til et system er det vanligvis ingen forskjell mellom disse to, siden alle ikke-første prøver av inngangen er null: Siden et slikt system er lineært og skiftende, vet vi at dens effekt på alle sinusoid vil bare være å skalere og skifte den. Her er det viktig at vi bruker den sirkulære versjonen Den sirkulært-konvolverte versjonen skiftes og skaleres litt, mens versjonen med vanlig konvolusjon er forvrengt i starten. Lar se hva den eksakte skaleringen og skiftingen er ved å bruke en fft: Både inngang og utgang har amplitude bare ved frekvenser 1 og -1, som er som det burde være, gitt at inngangen var en sinusformet og systemet var lineært. Utgangsverdiene er større med et forhold på 10,62518 1,3281. Dette er gevinsten til systemet. Hva med fasen Vi trenger bare å se hvor amplitude er ikke-null: Inngangen har en fase av pi2, som vi ba om. Utgangsfasen skiftes med ytterligere 1,0594 (med motsatt tegn for negativ frekvens), eller ca. 16 av en syklus til høyre, som vi kan se på grafen. Nå kan vi prøve en sinusoid med samme frekvens (1), men i stedet for amplitude 1 og fase pi2, kan vi prøve amplitude 1.5 og fase 0. Vi vet at bare frekvens 1 og -1 vil ha null null amplitude, så vi kan bare se på dem: Igjen er amplitudeforholdet (15.937712.0000) 1.3281 - og for fasen blir det igjen skiftet med 1.0594 Hvis disse eksemplene er typiske, kan vi forutsi effekten av vårt system (impulsrespons .1 .2 .3 .4 .5) på hvilken som helst sinusoid med frekvens 1 - amplituden vil bli økt med en faktor på 1,3281 og den (positive frekvens) fase vil bli forskyvet med 1,0594. Vi kunne fortsette å beregne effekten av dette systemet på sinusoider av andre frekvenser med samme metoder. Men det er en mye enklere måte, og en som etablerer det generelle punktet. Siden (sirkulær) konvolusjon i tidsdomenet betyr multiplikasjon i frekvensdomenet, følger det med at DFT av impulsresponsen med andre ord er forholdet mellom DFT for utgangen og DFT på inngangen. I dette forholdet er DFT-koeffisientene komplekse tall. Siden abs (c1c2) abs (c1) abs (c2) for alle komplekse tall c1, c2, forteller denne ligningen oss at amplitudespektret for impulsresponsen alltid vil være forholdet mellom amplitudespektret for utgangen og inngangen til inngangen . I tilfelle av fasespektret er vinkel (c1c2) vinkel (c1) - vinkel (c2) for alle c1, c2 (med den forutsetning at faser som er forskjellige med n2pi regnes like). Fasespektret for impulsresponsen vil derfor alltid være forskjellen mellom fasespekteret for utgangen og inngangen (med hvilke korrigeringer med 2pi som er nødvendig for å holde resultatet mellom - pi og pi). Vi kan se fasevirkningene tydeligere hvis vi pakker ut representasjonen av fase, dvs. hvis vi legger til flere multipler på 2pi etter behov for å minimere hoppene som er produsert av periodisk karakter av vinkelen () - funksjonen. Selv om amplitude og fase vanligvis brukes til grafisk og jevn tabellpresentasjon, da de er en intuitiv måte å tenke på effekten av et system på de forskjellige frekvenskomponentene i inngangen, er de komplekse Fourier-koeffisientene mer nyttige algebraisk, siden de tillater det enkle uttrykket for forholdet Den generelle tilnærmingen vi nettopp har sett vil fungere med vilkårlig filtre av typen skissert, hvor hver utgangseksempel er en vektet sum av et sett av inngangssampler. Som nevnt tidligere kalles disse ofte Finite Impulse Response-filtre, fordi impulsresponsen er av fin størrelse, eller noen ganger Flyttende gjennomsnittlig filtre. Vi kan bestemme frekvensresponsegenskapene til et slikt filter fra FFT av impulsresponsen, og vi kan også designe nye filtre med ønskede egenskaper ved IFFT fra en spesifikasjon av frekvensresponsen. Autoregressive (IIR) - filtre Det ville være lite poeng å ha navn på FIR-filtre, med mindre det var noe annet å skille dem fra, og så de som har studert pragmatikk, vil ikke bli overrasket over at det er en annen stor art av lineært tidsinvariant filter. Disse filtrene kalles noen ganger rekursive fordi verdien av tidligere utganger (samt tidligere innganger) betyr noe, selv om algoritmene generelt skrives ved hjelp av iterative konstruksjoner. De kalles også Infinite Impulse Response (IIR) filtre, fordi deres respons på impulser generelt går for alltid. De kalles også noen ganger autoregressive filtre, fordi koeffisientene kan tenkes som følge av å foreta lineær regresjon for å uttrykke signalverdier som en funksjon av tidligere signalverdier. Forholdet mellom FIR og IIR-filtre kan ses tydelig i en lineær konstant-koeffisientforskjellekvasjon, dvs. å sette en vektet sum av utganger som er lik en vektet sum av innganger. Dette er som ligningen som vi ga tidligere for årsakssystemet FIR-filter, bortsett fra at i tillegg til den vektede summen av innganger, har vi også en vektet sum av utganger. Hvis vi vil tenke på dette som en prosedyre for å generere utgangssampler, må vi omarrangere ligningen for å få et uttrykk for gjeldende utgangseksempel y (n), Vedta konvensjonen at a (1) 1 (f. eks. Ved å skalere andre som og bs), kan vi kvitte seg med 1a (1) termen: y (n) b (1) x (n) b (2) x (n-1). b (Nb1) x (n-nb) - a (2) y (n-1) -. - a (Na1) y (n-na) Hvis alle a (n) annet enn a (1) er null, reduseres dette til vår gamle venn, det kausale FIR-filteret. Dette er det generelle tilfellet av et (kausal) LTI filter, og implementeres av MATLAB-funksjonsfilteret. La oss se på tilfellet der b-koeffisientene bortsett fra b (1) er null (i stedet for FIR-tilfellet, hvor a (n) er null): I dette tilfellet beregnes nåværende utgangsprøve y (n) som en vektet kombinasjon av gjeldende inngangseksempel x (n) og tidligere utgangsprøver y (n-1), y (n-2) osv. For å få en ide om hva som skjer med slike filtre, kan vi starte med tilfellet hvor: Det vil si at den nåværende utgangsprøven er summen av gjeldende inngangseksempel og halvparten av den forrige utgangsprøven. Vel ta en inngangspuls gjennom noen få skritt, en om gangen. Det skal være klart på dette punktet at vi enkelt kan skrive et uttrykk for nth utgangsprøveverdien: det er bare (Hvis MATLAB telles fra 0, ville dette bare være .5n). Siden det vi beregner er impulsresponsen til systemet, har vi vist ved eksempel at impulsresponsen faktisk kan ha uendelig mange ikke-nullprøver. For å implementere dette trivielle førstegangsfilteret i MATLAB kunne vi bruke filter. Samtalen vil se slik ut: og resultatet er: Er denne virksomheten virkelig fortsatt lineær? Vi kan se på dette empirisk: For en mer generell tilnærming, vurder verdien av en utgangseksempel y (n). Ved suksessiv substitusjon kan vi skrive dette som: Dette er akkurat som vår gamle venn, sammenkallings-summen av et FIR-filter, med impulsresponsen gitt av uttrykket .5k. og lengden på impulsresponsen er uendelig. Dermed de samme argumentene som vi pleide å vise at FIR-filtre var lineære, vil nå gjelde her. Så langt kan dette virke som mye oppstyr om ikke mye. Hva er denne hele undersøkelsesgruppen god for Vel, svar på dette spørsmålet i faser, med utgangspunkt i et eksempel. Det er ikke en stor overraskelse at vi kan beregne en samplet eksponensiell ved rekursiv multiplikasjon. La oss se på et rekursivt filter som gjør noe mindre tydelig. Denne gangen gjør du det til et andreordfilter, slik at anropet til filteret vil være av skjemaet. Lets angi den andre utgangskoeffisienten a2 til -2cos (2pi40), og den tredje utgangskoeffisienten a3 til 1, og se på impulsen respons. Ikke veldig nyttig som et filter, men det genererer en samplet sinusbølge (fra en impuls) med tre multipliser-adds per prøve. For å forstå hvordan og hvorfor det gjør dette, og hvordan rekursive filtre kan utformes og analyseres i Jo mer generelt, vi må gå tilbake og ta en titt på noen andre egenskaper av komplekse tall, på vei til å forstå z transform. Frequency Response of Running Average Filter Frekvensresponsen til et LTI-system er DTFT av impulsrespons, impulsresponsen av et L-prøve-glidende gjennomsnitt er Siden det bevegelige gjennomsnittsfilteret er FIR, reduserer frekvensresponsen til den endelige summen. Vi kan bruke den svært nyttige identiteten til å skrive frekvensresponsen som hvor vi har sluppet minus jomega . N 0 og M L minus 1. Vi kan være interessert i størrelsen på denne funksjonen for å avgjøre hvilke frekvenser som kommer gjennom filteret som ikke er overvåket og som er dempet. Nedenfor er et plott av størrelsen på denne funksjonen for L 4 (rød), 8 (grønn) og 16 (blå). Den horisontale aksen varierer fra null til pi radianer per prøve. Legg merke til at frekvensresponsen i alle tre tilfeller har en lowpass-karakteristikk. En konstant komponent (nullfrekvens) i inngangen passerer gjennom filteret uopprettholdt. Visse høyere frekvenser, som pi 2, elimineres helt av filteret. Men hvis hensikten var å designe et lavpassfilter, har vi ikke gjort det veldig bra. Noen av de høyere frekvensene dempes bare med en faktor på ca 110 (for 16 poeng glidende gjennomsnitt) eller 13 (for firepunkts glidende gjennomsnitt). Vi kan gjøre mye bedre enn det. Ovennevnte tegning ble opprettet av følgende Matlab-kode: omega 0: pi400: pi H4 (14) (1-exp (-iomega4)). (1-exp (-iomega)) H8 (18) iomega8)). (1-exp (-iomega)) H16 (116) (1-exp (-iomega16)) (1-exp (-iomega)) plot (omega, abs (H4) abs H16)) akse (0, pi, 0, 1) Copyright copy 2000- - University of California, BerkeleyMoving gjennomsnittlig filter Du kan tenke på tittellisten din som tråder du har bokmerket. Du kan legge til koder, forfattere, tråder, og til og med søkeresultater til tittelisten din. På denne måten kan du lett holde styr på emner som du er interessert i. Hvis du vil se tittelisten din, klikker du på linken Quotere Newsreaderquot. Hvis du vil legge til elementer i oversiktelisten din, klikker du på kvoten for å se listekjennelinken nederst på en side. Hvordan legger jeg til et element i ventelisten For å legge til søkekriterier i urlisten din, søk etter ønsket uttrykk i søkeboksen. Klikk på quotAdd dette søket til min watch listquot link på søkeresultatsiden. Du kan også legge til en etikett i oversiktelisten din ved å søke etter taggen med direktivet quottag: tagnamequot hvor tagname er navnet på taggen du vil se. Hvis du vil legge til en forfatter i tittelisten din, går du til forfatterens profilside og klikker på quotAddis denne forfatteren til klokken min på listen over klikklister øverst på siden. Du kan også legge til en forfatter til tittelisten din ved å gå til en tråd som forfatteren har lagt ut på og klikk på quotAdd denne forfatteren til min watch listquot link. Du vil bli varslet når forfatteren lager et innlegg. Hvis du vil legge til en tråd i oversiktelisten din, går du til trådsiden og klikker på quotAdd denne tråden til kollisjonslisten-linken øverst på siden. Om nyhetsgrupper, nyhetslesere og MATLAB Central Hva er nyhetsgrupper Nyhetsgruppene er et verdensomspennende forum som er åpent for alle. Nyhetsgrupper brukes til å diskutere et stort spekter av emner, lage meldinger og handelsfiler. Diskusjoner blir gjengitt eller gruppert på en måte som lar deg lese en utgitt melding og alle svarene i kronologisk rekkefølge. Dette gjør det enkelt å følge tråden i samtalen, og for å se hva du allerede har sagt før du legger inn ditt eget svar eller foreta et nytt innlegg. Nyhetsgruppens innhold distribueres av servere som er vert for ulike organisasjoner på Internett. Meldinger utveksles og administreres ved hjelp av åpne standardprotokoller. Ingen enkelt enhet ldquoownsrdquo nyhetsgruppene. Det er tusenvis av nyhetsgrupper som hver adresserer et enkelt emne eller område av interesse. MATLAB Central Newsreader poster og viser meldinger i comp. soft-sys. matlab nyhetsgruppen. Hvordan leser eller poster jeg til nyhetsgruppene Du kan bruke den integrerte nyhetsleseren på MATLAB Central-nettstedet til å lese og legge inn meldinger i denne nyhetsgruppen. MATLAB Central er vert for MathWorks. Meldinger sendt via MATLAB Central Newsreader er sett av alle som bruker nyhetsgruppene, uansett hvordan de får tilgang til nyhetsgruppene. Det er flere fordeler med å bruke MATLAB Central. En konto Din MATLAB Central-konto er knyttet til MathWorks-kontoen din for enkel tilgang. Bruk e-postadressen til ditt valg MATLAB Central Newsreader lar deg definere en alternativ e-postadresse som din postadresse, unngå rot i din primære postkasse og redusere spam. Spam kontroll De fleste nyhetsgruppespam blir filtrert ut av MATLAB Central Newsreader. Merking Meldinger kan merkes med en relevant etikett av en pålogget bruker. Etiketter kan brukes som nøkkelord for å finne bestemte filer av interesse, eller som en måte å kategorisere dine bokmerkede innlegg på. Du kan velge å tillate andre å se kodene dine, og du kan se eller søke på andrersquo-koder, så vel som de i fellesskapet som helhet. Tagging gir en måte å se både de store trendene og de mindre, mer uklare ideene og applikasjonene. Vaktlister Ved å sette opp lister kan du bli varslet om oppdateringer gjort til innlegg som er valgt av forfatter, tråd eller en hvilken som helst søkevariabel. Varselmeldingene dine kan sendes via e-post (daglig fordøyelse eller umiddelbar), vises i Min nyhetsleser, eller sendes via RSS-feed. Andre måter å få tilgang til nyhetsgruppene Bruk en nyhetsleser gjennom din skole, arbeidsgiver eller Internett-leverandør Betal for nyhetsgruppe tilgang fra en kommersiell leverandør Bruk Google Grupper Mathforum. org gir en nyhetsleser med tilgang til comp. soft sys. matlab-nyhetsgruppen Kjør din egen server. For typiske instruksjoner, se: slyckng. phppage2 Velg ditt land
Topp 10 Forex online meglere 2016 Vi gir deg en veldig varm velkomst til de beste Forex meglere listen. hvilken tittel er helt forteller for seg selv. Vi har gjort denne topp Forex meglere rating for å vise deg statistikken, samt registrering av ulike meglere, spesielt av de beste Forex-selskapene. gi handelsmenn sammen med uavhengig vurdering og mulighet til å legge igjen sine kommentarer om noen forhandler. Videre vil du på denne topp 10 meglere informasjonsdisken få all nødvendig informasjon om meglere, som er gitt i vurderingen av de beste Forex trading meglerne. inkludert CFD-plattformer samt Forex-plattformer som jobber med den mest populære MetaTrader trading plattformen. Vi har også opprettet denne listen med en oppmerksomhet til de Forex meglere som gir den beste analytiske støtten til sine kunder med jevne mellomrom. Det er svært viktig å gjøre et riktig valg når du skal lønnsom handel på Forex valutamarkedet. Våre topp 10 handelsplattformer er et flott verktøy, som har som m...
Comments
Post a Comment