Ved hjelp av MATLAB, hvordan kan jeg finne tre-dagers glidende gjennomsnitt av en bestemt kolonne av en matrise og legge til glidende gjennomsnitt i den matrisen jeg prøver å beregne tre-dagers glidende gjennomsnitt fra bunnen til toppen av matrisen. Jeg har oppgitt koden min: Gitt følgende matrise a og maske: Jeg har prøvd å implementere conv kommandoen, men jeg mottar en feil. Her er conv kommandoen jeg har prøvd å bruke på 2. kolonne av matrise a: Utgangen jeg ønsker er gitt i følgende matrise: Hvis du har noen forslag, vil jeg sette stor pris på det. Takk for kolonne 2 i matrisen a, beregner jeg 3-dagers glidende gjennomsnitt som følger og plasserer resultatet i kolonne 4 i matrise a (jeg omdøpt matrise a som 39desiredOutput39 bare for illustrasjon). 3-dagers gjennomsnittet av 17, 14, 11 er 14 det 3-dagers gjennomsnittet på 14, 11, 8 er 11 3-dagers gjennomsnittet av 11, 8, 5 er 8 og 3-dagers gjennomsnittet på 8, 5, 2 er 5. Det er ingen verdi i de nederste 2 radene for fjerde kolonne fordi beregningen for 3-dagers glidende gjennomsnitt begynner nederst. Den 39 ugyldige 39-utgangen vil ikke bli vist før minst 17, 14 og 11. Forhåpentligvis er dette fornuftig ndash Aaron 12. juni kl 13:28 Generelt vil det hjelpe hvis du vil vise feilen. I dette tilfellet gjør du to ting feil: Først må fellingen din deles med tre (eller lengden på det bevegelige gjennomsnittet). For det andre, merk størrelsen på c. Du kan ikke bare passe inn i en. Den typiske måten å få et bevegelige gjennomsnitt på, ville være å bruke samme: men det ser ikke ut som du vil. I stedet er du tvunget til å bruke et par linjer: 29. september 2013 Flytte gjennomsnitt ved konvolusjon Hva er glidende gjennomsnitt og hva er det bra for Hvordan beveger du gjennomsnittsverdi ved å bruke konvolusjon Flytende gjennomsnitt er en enkel operasjon som vanligvis brukes til å undertrykke støy av en signal: vi setter verdien av hvert punkt til gjennomsnittet av verdiene i nabolaget. Med en formel: Her er x inngangen, og y er utgangssignalet, mens størrelsen på vinduet er w, skulle være merkelig. Formelen ovenfor beskriver en symmetrisk operasjon: prøvene tas fra begge sider av det aktuelle punktet. Nedenfor er et virkelighetseksempel. Det punktet som vinduet ligger faktisk er rødt. Verdier utenfor x skal være nuller: For å spille rundt og se effekten av glidende gjennomsnitt, ta en titt på denne interaktive demonstrasjonen. Slik gjøres det ved konvolusjon Som du kanskje har gjentatt, beregner det enkle glidende gjennomsnittet likningen: i begge tilfeller skyves et vindu langs signalet og elementene i vinduet oppsummeres. Så, prøv å gjøre det samme ved å bruke konvolusjon. Bruk følgende parametre: Ønsket utgang er: Som første tilnærming, la oss prøve det vi får ved å samle x-signalet med følgende k-kjerne: Utgangen er nøyaktig tre ganger større enn den forventede. Det kan også ses at utgangsvurderingene er oppsummeringen av de tre elementene i vinduet. Det er fordi under konvolusjonen glir vinduet sammen, alle elementene i det blir multiplisert med en og deretter oppsummert: yk 1 cdot x 1 cdot x 1 cdot x For å få de ønskede verdiene for y. Utgangen skal deles med 3: Ved en formel som inkluderer divisjonen: Men ville det ikke være optimal å gjøre avdelingen under konvolusjonen. Her kommer ideen ved å omplassere ligningen: Så vi skal bruke følgende k-kjerne: På denne måten vil vi få ønsket utdata: Generelt: hvis vi ønsker å gjøre bevegelige gjennomsnitt ved konvolusjon som har en vindusstørrelse på w. Vi skal bruke følgende k-kjerne: En enkel funksjon som gjør det bevegelige gjennomsnittet er: Et eksempelbruk er: Jeg må beregne et glidende gjennomsnitt over en dataserie, innenfor en for-løkke. Jeg må få glidende gjennomsnitt over N9 dager. Array Im computing in er 4 serier av 365 verdier (M), som i seg selv er gjennomsnittsverdier for et annet sett med data. Jeg vil plotte gjennomsnittverdiene av dataene mine med det bevegelige gjennomsnittet i en tomt. Jeg googled litt om å flytte gjennomsnitt og conv kommandoen og fant noe som jeg prøvde å implementere i min kode .: Så i utgangspunktet beregner jeg mitt gjennomsnitt og plotter det med et (feil) glidende gjennomsnitt. Jeg plukket wts verdien rett utenfor mathworks nettstedet, så det er feil. (kilde: mathworks. nlhelpeconmoving-average-trend-estimation. html) Mitt problem er imidlertid at jeg ikke forstår hva dette wts er. Kan noen forklare om det har noe å gjøre med verdiene i vektene: det er ugyldig i dette tilfellet. Alle verdier er vektet det samme. Og hvis jeg gjør dette helt feil, kan jeg få litt hjelp med det Min oppriktige takk. spurte 23 september klokken 19:05 Bruk av conv er en utmerket måte å implementere et bevegelig gjennomsnitt på. I koden du bruker, er wts hvor mye du veier hver verdi (som du gjettet). summen av den vektoren skal alltid være lik en. Hvis du vil vektere hver verdi jevnt og gjøre et N-bevegelig filter, så vil du gjøre det. Ved å bruke det gyldige argumentet i conv, vil det føre til at du har færre verdier i Ms enn du har i M. Bruk det samme hvis du ikke har noe imot effekten av null polstring. Hvis du har signalbehandlingsverktøyskassen, kan du bruke cconv hvis du vil prøve et sirkulært glidende gjennomsnitt. Noe som Du burde lese conv and cconv dokumentasjonen for mer informasjon hvis du ikke allerede har.
Topp 10 Forex online meglere 2016 Vi gir deg en veldig varm velkomst til de beste Forex meglere listen. hvilken tittel er helt forteller for seg selv. Vi har gjort denne topp Forex meglere rating for å vise deg statistikken, samt registrering av ulike meglere, spesielt av de beste Forex-selskapene. gi handelsmenn sammen med uavhengig vurdering og mulighet til å legge igjen sine kommentarer om noen forhandler. Videre vil du på denne topp 10 meglere informasjonsdisken få all nødvendig informasjon om meglere, som er gitt i vurderingen av de beste Forex trading meglerne. inkludert CFD-plattformer samt Forex-plattformer som jobber med den mest populære MetaTrader trading plattformen. Vi har også opprettet denne listen med en oppmerksomhet til de Forex meglere som gir den beste analytiske støtten til sine kunder med jevne mellomrom. Det er svært viktig å gjøre et riktig valg når du skal lønnsom handel på Forex valutamarkedet. Våre topp 10 handelsplattformer er et flott verktøy, som har som m...
Comments
Post a Comment